Marking Instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
2.		- 1 apply $m \log _{n} x=\log _{n} x^{m}$ - 2 apply $\log _{n} x-\log _{n} y=\log _{n} \frac{x}{y}$ -3 evaluate	$\begin{aligned} & \cdot \log _{3} 6^{2} \\ & \bullet \log _{3} \frac{6^{2}}{4} \\ & \bullet 2 \end{aligned}$	3
Notes:				
1. Do not penalise the omission of the base of the logarithm at \bullet^{1} or \bullet^{2}. 2. Correct answer with no working, award $0 / 3$.				
Commonly Observed Responses:				
$\begin{aligned} & \text { Candidate A - introducing a variable } \\ & \log _{3} 9 \\ & 3^{x}=9 \\ & x=2 \end{aligned}$			Candidate B $\begin{array}{ll} 2 \log _{3}\left(\frac{6}{4}\right) & \bullet^{2} x \\ \log _{3}\left(\frac{6}{4}\right)^{2} & \bullet \sqrt{\checkmark 1} \bullet^{3} \end{array}$	

Question			Generic scheme	Illustrative scheme	Max mark
	3.		Method 1 - ${ }^{1}$ equate composite function to x -2 write $h\left(h^{-1}(x)\right)$ in terms of $h^{-1}(x)$ -3 state inverse function	Method 1 - ${ }^{1} h\left(h^{-1}(x)\right)=x$ - $24+\frac{1}{3} h^{-1}(x)=x$ - ${ }^{3} h^{-1}(x)=3(x-4)$	3
			Method 2 -1 write as $y=h(x)$ and start to rearrange - ${ }^{2}$ express x in terms of y -3 state inverse function	Method 2 $\begin{array}{ll} \bullet & y=h(x) \Rightarrow x=h^{-1}(y) \\ & y-4=\frac{1}{3} x \text { or } 3 y=12+x \\ \bullet^{2} & x=3(y-4) \\ \bullet^{3} & h^{-1}(y)=3(y-4) \\ & \Rightarrow h^{-1}(x)=3(x-4) \end{array}$	
Notes:					
1. In Method 1 , accept $4+\frac{1}{3} h^{-1}(x)=x$ for \bullet^{1} and \bullet^{2}. 2. In Method 2, accept ' $y-4=\frac{1}{3} x$ ' without reference to $y=h(x) \Rightarrow x=h^{-1}(y)$ at $\bullet \cdot$. 3. In Method 2, accept $h^{-1}(x)=3(x-4)$ without reference to $h^{-1}(y)$ at \bullet^{3}. 4. In Method 2, beware of candidates with working where each line is not mathematically equivalent. See Candidates A and B for example. 5. At \bullet^{3} stage, accept h^{-1} written in terms of any dummy variable eg $h^{-1}(y)=3(y-4)$. 6. $y=3(x-4)$ does not gain \bullet^{3}. 7. $h^{-1}(x)=3(x-4)$ with no working gains $3 / 3$.					

	Question	Generic scheme	Illustrative scheme	Max mark
4.	4.	- ${ }^{1}$ express first term in differentiable form -2 differentiate first term - ${ }^{3}$ differentiate second term	-1 $y=x^{\frac{3}{2}} \ldots$ stated or implied by ${ }^{2}$ - ${ }^{2} \frac{3}{2} x^{\frac{1}{2}} \ldots$ - ${ }^{3} \ldots+2 x^{-2}$	3
Notes:				
1. \bullet^{2} is only available for differentiating a term with a fractional index. 2. Where candidates attempt to integrate throughout, only \bullet^{1} is available.				
Commonly Observed Responses:				
Candidate A - differentiating over two lines$\begin{array}{ll} y=x^{\frac{3}{2}}+2 x^{-2} & \bullet \checkmark \\ y=\frac{3}{2} x^{\frac{1}{2}}+2 x^{-2} & \bullet^{2} \checkmark \bullet^{3} x \end{array}$				

Notes:

1. Do not award \bullet^{1} for $m=\tan ^{-1} \frac{\pi}{6}$. However \bullet^{2} and \bullet^{3} are still available. Where candidates state $m=\tan ^{-1} \frac{\pi}{3}$ only \bullet^{3} is available.
2. Where candidates make no reference to a trigonometric ratio or use an incorrect trigonometric ratio, \bullet^{1} and \bullet^{2} are unavailable.
3. \bullet^{3} is only available as a consequence of attempting to use a tan ratio. See Candidate F
4. Accept $y=\frac{1}{\sqrt{3}}(x+2)$ for \bullet^{3}, but do not accept $y-0=\frac{1}{\sqrt{3}}(x+2)$.

Commonly Observed Responses:

Candidate A

$m=\tan \frac{\pi}{3}$
$m=\sqrt{3}$
$y=\sqrt{3} x+2 \sqrt{3}$
Candidate C
$m=\tan \theta$ (with or without a diagram)
$m=\frac{1}{\sqrt{3}}$

Candidate B

$m=\frac{1}{\sqrt{3}}($ with or without a diagram $) \bullet^{1} \wedge \bullet^{2} \boxed{\checkmark}$
$y=\frac{1}{\sqrt{3}} x+\frac{2}{\sqrt{3}}$
${ }^{3} \quad \checkmark 1$
Candidate D
$m=\tan \theta$ (with or without a diagram)
$\bullet^{1} \wedge$
$m=\sqrt{3}$
$\bullet^{2} x$
$y=\sqrt{3} x+2 \sqrt{3}$
${ }^{3}-1$
Candidate E
$m=\tan \theta=\frac{\pi}{6}$
$m=\frac{1}{\sqrt{3}}$
${ }^{1} \times$
Candidate F

$m=\tan \frac{\pi}{3}$	$\bullet^{1} x$
$m=60$	$\bullet^{2} x$
$y=60(x+2)$	$\bullet^{3} x$

1. For candidates who differentiate throughout or make no attempt to integrate, award 0/4.
2. If candidates start to integrate individual terms within the bracket or attempt to expand a bracket or use another invalid approach no further marks are available.
3. Do not penalise the inclusion of ' $+c$ ' or the continued appearance of the integral sign after \bullet '.
4. \bullet^{3} is only available for substitution into an expression which is equivalent to the integrand obtained at $\bullet^{\boldsymbol{\circ}}$.
5. The integral obtained must contain a non-integer power for \bullet^{4} to be available.
6. \bullet^{4} is only available to candidates who deal with the coefficient of x at the \bullet^{2} stage. See Candidate A.

Commonly Observed Responses:

Candidate A	Candidate B-NOT differentiating throughout
$(10-3 x)^{\frac{1}{2}}{ }^{\text {a }}$	$-\frac{1}{2}(10-3 x)^{-\frac{3}{2}} \times-\frac{1}{3} \quad \bullet$ • $\bullet^{2} \downarrow$
$\frac{1}{\frac{1}{2}}$	
$\overline{2}$	$\frac{1}{6}(10-3(2))^{-\frac{3}{2}}-\frac{1}{6}(10-3(-5))^{-\frac{3}{2}} \quad \cdot 3$
$2(10-3(2))^{\frac{1}{2}}-2(10-3(-5))^{\frac{1}{2}} \quad \cdot 3 \sqrt{ }$	39
-6 $\quad \cdot 4 \sqrt{ }{ }^{2}$ Note 6	2000
$\begin{aligned} & \text { Candidate C } \\ & \underline{(10-3 x)^{\frac{1}{2}}} \times-3 \end{aligned}$	Candidate D - integrating over two lines $(10-3 x)^{\frac{1}{2}}$
	1
$\overline{2}$	$\overline{2}$
$-6(10-3(2))^{\frac{1}{2}}-\left(-6(10-3(-5))^{\frac{1}{2}}\right) \cdot \bullet^{3} \sqrt{ }$	$\frac{(10-3 x)^{\frac{1}{2}}}{1} \times-\frac{1}{3} \quad \bullet \downarrow \cdot \bullet^{2} \wedge$
18 汭 \downarrow	2
	$-\frac{2}{3}(10-3(2))^{\frac{1}{2}}-\left(-\frac{2}{3}(10-3(-5))^{\frac{1}{2}}\right) \cdot \sqrt{ }$
	$2 \cdot \bullet \sqrt{ } 1$

Question			Generic Scheme	Illustrative Scheme	Max Mark
7.	(a)	(i)	- ${ }^{1}$ determine $\sin r$	- ${ }^{1} \frac{1}{\sqrt{10}}$	1
		(ii)	-2 determine $\sin q$	$\cdot \frac{3}{\sqrt{13}}$	1
Notes:					
1. In (a)(ii), where candidates do not simplify the perfect square see Candidates A and B.					
Commonly Observed Responses:					
Candidate A$\sin q=\frac{\sqrt{9}}{\sqrt{13}}$			$\cdot^{2} \boxed{\checkmark 2}$	Candidate B-simplification in part (b) (a)(ii) $\sin q=\frac{\sqrt{9}}{\sqrt{13}}$ (b) $\sin (q-r)=\frac{7}{\ldots}$ Roots have been simplified in (b)	

Question		Generic Scheme	Illustrative Scheme	Max Mark
7.	(b)	${ }^{3}$ select appropriate formula and express in terms of p and q - ${ }^{4}$ substitute into addition formula -5 evaluate $\sin (q-r)$	$\bullet^{3} \sin q \cos r-\cos q \sin r$ stated or implied by \bullet^{4} - $\frac{3}{\sqrt{13}} \times \frac{3}{\sqrt{10}}-\frac{2}{\sqrt{13}} \times \frac{1}{\sqrt{10}}$. $5 \frac{7}{\sqrt{130}}$	3

Notes:

2. Award \bullet^{3} for candidates who write $\sin \left(\frac{3}{\sqrt{13}}\right) \times \cos \left(\frac{3}{\sqrt{10}}\right)-\sin \left(\frac{2}{\sqrt{13}}\right) \times \cos \left(\frac{1}{\sqrt{10}}\right) \cdot \bullet^{4}$ and $\bullet{ }^{5}$ are unavailable.
3. For any attempt to use $\sin (q-r)=\sin q-\sin r, \bullet^{4}$ and \bullet^{5} are unavailable.
4. At \bullet^{5}, the answer must be given as a single fraction. Accept $\frac{7}{\sqrt{13} \sqrt{10}}, \frac{7 \sqrt{10}}{10 \sqrt{13}}$ and $\frac{7 \sqrt{13}}{13 \sqrt{10}}$.
5. Do not penalise trigonometric ratios which are less than -1 or greater than 1 .

Commonly Observed Responses:

Notes:

1. Accept $\log _{6} x(x+5)=\ldots$ for \bullet^{1}.
2. \bullet^{2} is not available for $x(x+5)=2^{6}$; however candidates may still gain \bullet^{3} and \bullet^{4}.
3. \bullet^{3} and \bullet^{4} are only available if the quadratic reached at \bullet^{3} is obtained by applying the rules in \bullet^{1} and \bullet^{2}.
4. \bullet^{4} is only available for solving a polynomial of degree two or higher.
5. At \bullet^{4}, accept any indication that -9 has been discarded. For example, scoring out $x=-9$ or underlining $x=4$.

Commonly Observed Responses:

Candidate A

$\log _{6}(x(x+5))=2$	$\bullet \sqrt{ }$
$x(x+5)=12$	$\bullet^{2} \times$
$x^{2}+5 x-12=0$	$\bullet^{3} \checkmark 1$
$\frac{-5 \pm \sqrt{73}}{2}$ and $x>0 \Rightarrow x=\frac{-5+\sqrt{73}}{2}$	$\bullet 4 \sqrt{\checkmark 1}$

Candidate B

$$
\begin{array}{ll}
\log _{6}(x(x+5))=2 & \bullet^{1} \checkmark \\
x(x+5)=64 & \bullet^{2} \star \\
x^{2}+5 x-64=0 & \bullet^{3} \sqrt{\checkmark 1} \\
\frac{-5 \pm \sqrt{281}}{2} \text { and } x>0 \Rightarrow x=\frac{-5+\sqrt{281}}{2} & \bullet^{4} \sqrt{\checkmark 1}
\end{array}
$$

Question		Generic Scheme	Illustrative Scheme	Max Mar
9.		- ${ }^{1}$ substitute for $\cos 2 x^{\circ}$ into equation - ${ }^{2}$ express in standard quadratic form -3 factorise ${ }^{4}$ solve for $\cos x^{\circ}$ - ${ }^{5}$ solve for x	- $12 \cos ^{2} x^{\circ}-1 \ldots$ - $2 \cos ^{2} x^{\circ}-5 \cos x^{\circ}+2=0$ - ${ }^{3}\left(2 \cos x^{\circ}-1\right)\left(\cos x^{\circ}-2\right)=0$ $\bullet^{4} \quad \cos x^{\circ}=\frac{1}{2} \quad \cos x^{\circ}=2$ -5 $x=60,300 \quad$ 'no solutions'	5

1. \bullet^{1} is not available for simply stating $\cos 2 x^{\circ}=2 \cos ^{2} x^{\circ}-1$ with no further working.
2. In the event of $\cos ^{2} x^{\circ}-\sin ^{2} x^{\circ}$ or $1-2 \sin ^{2} x^{\circ}$ being substituted for $\cos 2 x^{\circ}, \bullet^{1}$ cannot be awarded until the equation reduces to a quadratic in $\cos x^{\circ}$.
3. Substituting $2 \cos ^{2} \mathrm{~A}-1$ or $2 \cos ^{2} \alpha-1$ for $\cos 2 x^{\circ}$ at the \bullet^{1} stage should be treated as bad form provided the equation is written in terms of x at \bullet^{2} stage. Otherwise, \bullet^{1} is not available.
4. Do not penalise the omission of degree signs.
5. ' $=0$ ' must appear by \bullet^{3} stage for \bullet^{2} to be awarded. However, for candidates using the quadratic formula to solve the equation, ' $=0$ ' must appear at \bullet^{2} stage for \bullet^{2} to be awarded.
6. $\cos x^{\circ}=\frac{5 \pm \sqrt{9}}{4}$ gains \bullet^{3}.
7. Candidates may express the equation obtained at \bullet^{2} in the form $2 c^{2}-5 c+2=0$ or $2 x^{2}-5 x+2=0$. In these cases, award \bullet^{3} for $(2 c-1)(c-2)=0$ or $(2 x-1)(x-2)=0$. However, \bullet^{4} is only available if $\cos x^{\circ}$ appears explicitly at this stage. See Candidate A.
8. The equation $2+2 \cos ^{2} x^{\circ}-5 \cos x^{\circ}=0$ does not gain \bullet^{2} unless \bullet^{3} has been awarded.
9. $\cdot{ }^{4}$ and \bullet^{5} are only available as a consequence of trying to solve a quadratic equation. See Candidate B. However, \bullet^{5} is not available if the quadratic equation has repeated roots.
10. \bullet^{3}, \bullet^{4} and \bullet^{5} are not available for any attempt to solve a quadratic equation written in the form $a x^{2}+b x=c$. See Candidate C.
11. 0^{5} is only available for 2 valid solutions within the stated range. Ignore 'solutions' outwith the range. However, see Candidate E.
12. Accept $\cos x^{2}=2$ for \bullet^{5}. See Candidate A.

	uest	Generic Scheme	Illustrative Scheme	Max Mark
10.	(a)	-1 vertical scaling by a factor of 2 identifiable from graph - ${ }^{2}$ vertical translation of ' +1 ' units identifiable from graph - ${ }^{3}$ transformations applied in correct order	$\bullet{ }^{\bullet}{ }^{\bullet}$ •	3
Notes:				
1. • ${ }^{1}, \bullet^{2}$ and \bullet^{3} are only available for a 'cubic' with a maximum and minimum turning point. 2. Ignore intersections (or lack of intersections) with the original graph.				

Commonly Observed Responses:

Where the image of $(4,0)$ is not $(4,1)$, that point must be annotated (or drawn to within tolerance). In the following table, the images of the given points must be stationary points for the marks to be awarded.

Image of $(0,3)$	Image of $(4,0)$	Award...	
$(0,8)$	$(4,2)$	2/3	Transformation in wrong order
$(0,4)$	$(8,1)$	1/3	
$(0,4)$	$(4,1)$	1/3	Only vertical translation correct
$(0,4)$	$(2,1)$	1/3	
$(0,5)$	(4,-1)	2/3	Evidence of vertical scaling and transformation in correct order
$(0,6)$	$(4,0)$	1/3	
$(0,7)$	any incorrect point	1/3	
$(1,6)$	$(5,0)$	1/3	Evidence of vertical scaling
$(-1,6)$	$(3,0)$	1/3	
$(0,-2)$	$(4,1)$	1/3	Evidence of vertical translation
$(0,4)$	$(-4,1)$	1/3	Evidence of vertical translation
$(0,5)$	any other point	0/3	Insufficient evidence of
$(0,2)$	any other point	0/3	scaling/translation

Question		Generic Scheme	Illustrative Scheme	Max Mark
10.	(b)	\bullet^{4} state coordinates of stationary points	$\bullet^{4}(0,3)$ and $(8,0)$	1
Notes:				
Commonly Observed Responses:				

Question	Generic Scheme		Illustrative Scheme		Max Mark
12.	- ${ }^{1}$ start to diff - ${ }^{2}$ complete d \bullet^{3} evaluate de	entiate erentiation vative		$\left.-\frac{\pi}{3}\right) \ldots$	3
Notes:					
1. Where candidates make no attempt to differentiate or use another invalid approach, \bullet^{2} and \bullet^{3} are not available. 2. At the \bullet^{1} and \bullet^{2} stage, candidates who work in degrees cannot gain \bullet^{1}. However \bullet^{2} and \bullet^{3} are still available. 3. At the \bullet^{3} stage, do not penalise candidates who work in degrees or in radians and degrees. 4. Ignore the appearance of $+c$ at any stage.					
Commonly Observed Responses:					
Candidate A Differentiating over two lines$\begin{aligned} & f^{\prime}(x)=4 \cos \left(3 x-\frac{\pi}{3}\right) \cdot \bullet^{1} \\ & f^{\prime}(x)=12 \cos \left(3 x-\frac{\pi}{3}\right) \cdot{ }^{2} \wedge \\ & 6 \sqrt{3} \end{aligned}$		Candidate B$\begin{aligned} & 4 \cos \left(3 x-\frac{\pi}{3}\right) \times \frac{1}{3} \quad \bullet^{1} \checkmark \bullet^{2} x \\ & \frac{2 \sqrt{3}}{3} \cdot{ }^{3} \sqrt{ } \end{aligned}$		Candidate C$\begin{array}{ll} 4 \cos \left(3 x-\frac{\pi}{3}\right) & \bullet^{1} \checkmark \bullet^{2} \wedge \\ 2 \sqrt{3} & \bullet^{3} \checkmark 1 \end{array}$	
Candidate D$\begin{array}{ll} \pm 12 \sin \left(3 x-\frac{\pi}{3}\right) & \bullet^{1} x \\ \pm 6 & \bullet^{2} x \\ & \bullet^{3} \checkmark 1 \end{array}$		$\begin{array}{\|ll\|} \hline \text { Candidate E } & \\ \pm 4 \sin \left(3 x-\frac{\pi}{3}\right) \ldots & \bullet^{1} \star \\ \ldots \times 3 & e^{2} \checkmark 1 \\ \pm 6 & e^{3} \checkmark 1 \end{array}$		Candidate F$-12 \cos \left(3 x-\frac{\pi}{3}\right) \quad \bullet^{1} x$	

Question			Generic Scheme	Illustrative Scheme	Max Mark
13.	(a)	(i)	- 1 use -2 in synthetic division or evaluation of the cubic -2 complete division/evaluation and interpret result	$-2 \left\lvert\, \begin{array}{llll} 1 & -2 & -20 & -24 \\ 1 \end{array}\right.$ or $(-2)^{3}-2(-2)^{2}-20(-2)-24$ \bullet^{2} Remainder $=0 \therefore(x+2)$ is a factor or $f(-2)=0 \therefore(x+2)$ is a factor	2
		(ii)	- ${ }^{3}$ state quadratic factor - ${ }^{4}$ find remaining factors or apply the quadratic formula - ${ }^{5}$ state solution	- $x^{2}-4 x-12$ - ${ }^{4}(x+2)$ and $(x-6)$ or $\frac{4 \pm \sqrt{(-4)^{2}-4(1)(-12)}}{2(1)}$ $\cdot^{5}-2,6$	3

1. Communication at \bullet^{2} must be consistent with working at that stage - a candidate's working must arrive legitimately at 0 before \bullet^{2} can be awarded.
2. Accept any of the following for \bullet^{2} :

- ' $f(-2)=0$ so $(x+2)$ is a factor'
- 'since remainder $=0$, it is a factor'
- the ' 0 ' from any method linked to the word 'factor' by 'so', 'hence', $\therefore, \rightarrow, \Rightarrow$ etc.

3. Do not accept any of the following for \bullet^{2} :

- double underlining the ' 0 ' or boxing the ' 0 ' without comment
- ' $x=-2$ is a factor', '.. is a root'
- the word 'factor' only, with no link.

Commonly Observed Responses:

	(b)	\bullet^{6} state value of k	$\bullet^{6} 3$	$\mathbf{1}$

Notes:

1. Accept $y=f(x-3)$ or $f(x-3)$ for \bullet^{6}.

Commonly Observed Responses:

[END OF MARKING INSTRUCTIONS]

Marking Instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.	(b)	- ${ }^{4}$ determine midpoint of $A C$ - ${ }^{5}$ determine gradient of median -6 find equation	$\bullet{ }^{4}(3,1)$ ${ }^{5} 5$ - $6 y=5 x-14$	3

3. \cdot^{5} is only available to candidates who use a midpoint to find a gradient.
4. \bullet^{6} is only available as a consequence of using a 'midpoint' of $A C$ and the point B.
5. At ${ }^{6}$, accept any arrangement of a candidate's equation where constant terms have been simplified.
6. ${ }^{6}$ is not available as a consequence of using a perpendicular gradient.

Commonly Observed Responses:

Candidate A - Perpendicular bisector of AC
Midpoint $_{A C}(3,1)$
$m_{\mathrm{AC}}=\frac{1}{2} \Rightarrow m_{\perp}=-2$
$y+2 x=7$
For other perpendicular bisectors award $0 / 3$
Candidate C - Median through A
Midpoint $_{\mathrm{BC}}\left(\frac{9}{2},-\frac{1}{2}\right)$
$m_{\mathrm{AM}}=\frac{1}{11}$
$11 y=x-10$
$\bullet^{1} \checkmark$
$\bullet^{2} x$

- $\sqrt{\checkmark 2}$

| (c) | $\bullet 7$ determine x-coordinate
 \bullet^{8} determine y-coordinate | $\bullet^{7} 2.5$
 $\bullet^{8}-1.5$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- |

Notes:

7. For $\left(\frac{10}{4},-\frac{6}{4}\right)$ award $1 / 2$ (do not penalise repeated lack of simplification - general marking principle (l)).

Commonly Observed Responses:

Question	Generic scheme		Illustrative scheme		Max mark
2.	- ${ }^{1}$ use - ${ }^{2}$ apply - ${ }^{3}$ state	and simplify	-1 $(-8)^{2}-4(2)(4-p)$ - $232+8 p>0$ or $8 p>-32$ -3 $\quad p>-4$		3
Notes					
1. At \bullet^{1}, treat the inconsistent use of brackets eg $(-8)^{2}-4 \times 2 \times 4-p$ or $-8^{2}-4(2)(4-p)$ as bad form only if the candidate deals with the unbracketed terms correctly in the next line of working. 2. If candidates have the condition 'discriminant $=0$ ', then \bullet ' and \bullet ' are unavailable. However, see Candidate E. 3. If candidates have the condition 'discriminant <0 ', 'discriminant ≤ 0 ' or 'discriminant ≥ 0 ' then \bullet^{2} is lost but \bullet^{3} is available.					
Commonly Observed Responses:					
Candidate A - bad form$\begin{aligned} & (-8)^{2}-4 \times 2 \times 4-p>0 \\ & 32+8 p>0 \\ & p>-4 \end{aligned}$		$\bullet{ }^{1} \downarrow \bullet^{2} \downarrow$ $\bullet{ }^{3} \checkmark$	Candidate B-no coefficient of $p$$\begin{array}{ll} (-8)^{2}-4 \times 2 \times 4-p>0 & \\ 32-p>0 & \bullet \times \bullet^{2} \boxed{\checkmark 2} \\ p<32 & \bullet^{3} \checkmark 2 \end{array}$		
$\begin{aligned} & \text { Candidate C - bad form } \\ & -8^{2}-4 \times 2 \times(4-p)>0 \\ & 32+8 p>0 \\ & p>-4 \end{aligned}$		•1 ${ }^{1} \bullet^{2} \downarrow$ $\bullet{ }^{3} \checkmark$	Candidate D - not bad form $\begin{aligned} & -8^{2}-4 \times 2 \times(4-p)>0 \\ & -96+8 p>0 \\ & p>12 \end{aligned}$ $-1 \times \bullet^{2} \boxed{\checkmark}$ $\bullet^{3}-1$		
Candidate E-condition stated initially Real and distinct roots $b^{2}-4 a c>0$ $\begin{aligned} & (-8)^{2}-4(2)(4-p)=0 \\ & 32+8 p=0 \\ & p=-4 \end{aligned}$ so $p>-4$			Candidate F $\begin{array}{ll} 8^{2}-4(2)(4-p)>0 & \bullet^{1} x \\ 32+8 p>0 & \bullet^{2} \boxed{ } 1 \\ p>-4 & \bullet^{3} \sqrt{\checkmark 1} \end{array}$ However, $64-4(2)(4-p)>0$ as the first line of working may be awarded \bullet^{1}		

Question			Generic scheme		Illustrative scheme		Max
3.	(a)	(continued)					
Commonly Observed Responses:							
$\begin{aligned} & \text { Candidate D - errors at } \bullet^{2} \\ & k \sin x \cos a+k \cos x \sin a \bullet \bullet \\ & k \cos a=5 \\ & k \sin a=4 \\ & \tan a=\frac{4}{5} \\ & a=0.674 \ldots \\ & \sqrt{41} \sin (x+0.674 \ldots) \cdot \bullet^{2} \checkmark \bullet^{4} \boxed{\checkmark 1} \end{aligned}$				Candidate E-u $k \sin x \cos a+k$ $k \cos x=4$ $k \sin x=5$ $\tan x=\frac{5}{4}$ $x=0.896 \ldots$ $\sqrt{41} \sin (x+0.89$	e of x at \bullet^{2} $\cos x \sin a \bullet^{1} \checkmark$ $\begin{aligned} & \bullet^{2} x \\ & 6 \ldots) \bullet^{3} \sqrt{ } \bullet^{4} \sqrt{ } 1 \end{aligned}$	Candidate F $k \sin \mathrm{~A} \cos \mathrm{~B}+k \cos$ $k \cos A=4$ $k \sin \mathrm{~A}=5$ $\tan \mathrm{A}=\frac{5}{4}$ $\mathrm{A}=0.896 \ldots$ $\sqrt{41} \sin (x+0.896$	$\bullet^{1} x$ $\bullet^{2} x$
	(b)		- ${ }^{5}$ link to (a) - 6 solve for $(x$ ${ }^{-7}$ solve for x		- ${ }^{5} \sqrt{41} \sin$ - $\quad \stackrel{6}{6} .033 .$. - 0.137.	$\begin{aligned} & x+0.896 \ldots)=5.5 \\ & \bullet^{7} \\ & 2.108 \ldots \\ & 1.212 \ldots \end{aligned}$	3
Notes:							
10. In part (b), where candidates work in degrees throughout, the maximum mark available is $2 / 3$. 11. \bullet^{7} is only available for two solutions within the stated range. Ignore 'solutions' outwith the range. 12. At \bullet^{7} accept values of x which round to 0.1 or 1.2							
Commonly Observed Responses:							
Candidate G - converting to radians$\begin{aligned} \sqrt{41} \sin (x+51.3 \ldots) & \bullet x \\ \sqrt{41} \sin (x+51.3 \ldots)=5.5 & \bullet \boxed{ } 1 \\ x+51.3 \ldots=59.1 \ldots, 120.8 \ldots & \\ x=7.8 \ldots, 69.4 \ldots & \bullet \boxed{ } 1 \\ x=\frac{7.9 \pi}{180}, \frac{69.5 \pi}{180} & \bullet \boxed{ } 1 \end{aligned}$					Candidate H - working in degrees and truncation $\sqrt{41} \sin (x+51.3)$ $\sqrt{41} \sin (x+51.3)=5.5$ $x+51.3=59.1,120.9$ $x=7.8,69.6$ $\bullet^{1} \checkmark \bullet^{2} \checkmark \bullet^{3} \checkmark$.${ }^{4} x$ - $\checkmark 1 \cdot \cdot^{7}$ ^		
Candidate I - working in degrees $\quad \vdots$ $\bullet^{1} \checkmark \bullet^{2} \checkmark \bullet^{3} \downarrow$ $\sqrt{41} \sin (x+51.3 \ldots)$ $\bullet{ }^{4} \times$ $\sqrt{41} \sin (x+51.3 \ldots)=5.5$ $\bullet 5 \checkmark 1$ $x+51.3 \ldots=59.1 \ldots$ $x=7.8 \ldots$ $\bullet^{6} \wedge \bullet^{7} \wedge$					$\begin{aligned} & \text { Candidate J - W } \\ & \vdots \\ & \sqrt{41} \sin (x+51.3 \\ & \sqrt{41} \sin (x+51 . \\ & x+51.3 \ldots=59 . \end{aligned}$	rking in degrees $\begin{aligned} & . .) \\ & \ldots . .)=5.5 \\ & 1 . . ., 120.8 \ldots \end{aligned}$	$\checkmark \cdot{ }^{3} \checkmark$

	est	Generic scheme	Illustrative scheme	Max mark
4.	(a)	- ${ }^{1}$ state appropriate integral -2 integrate - ${ }^{3}$ substitute limits - ${ }^{4}$ evaluate area	$\begin{aligned} & \cdot \int_{-1}^{2}\left(x^{3}-5 x^{2}+2 x+8\right) d x \\ & \bullet^{2} \frac{1}{4} x^{4}-\frac{5}{3} x^{3}+\frac{2 x^{2}}{2}+8 x \\ & \bullet^{3}\left(\frac{1}{4}(2)^{4}-\frac{5}{3}(2)^{3}+(2)^{2}+8(2)\right) \\ & -\left(\frac{1}{4}(-1)^{4}-\frac{5}{3}(-1)^{3}+(-1)^{2}+8(-1)\right) \\ & \bullet^{4} \frac{63}{4} \text { or } 15.75 \end{aligned}$	4

1. Limits and ' $d x$ ' must appear at the \bullet ' stage for \bullet ' to be awarded.
2. Where a candidate differentiates one or more terms at \bullet^{2}, then \bullet^{3} and \bullet^{4} are not available.
3. Candidates who substitute limits without integrating, do not gain \bullet^{3} or \bullet^{4}.
4. Do not penalise the inclusion of ' $+c$ '.
5. Do not penalise the continued appearance of the integral sign after \bullet.
6. \bullet^{4} is not available where solutions include statements such as $-\frac{63}{4}=\frac{63}{4}$. See Candidate C .

Commonly Observed Responses:

Candidate A

$\int_{-1}^{2}\left(x^{3}-5 x^{2}+2 x+8\right)$
$=\frac{1}{4} x^{4}-\frac{5}{3} x^{3}+\frac{2 x^{2}}{2}+8 x$
$=\frac{63}{4}$
Candidate C - communication for ${ }^{4}$
$\int_{2}^{-1}\left(x^{3}-5 x^{2}+2 x+8\right) d x$

- ${ }^{1} \downarrow$
$\bullet^{2} \checkmark \bullet^{3} \checkmark$

However $-\frac{63}{4}=\frac{63}{4}$ square units does not gain \bullet^{4}
$=-\frac{63}{4}$, hence area is $\frac{63}{4}$.
...
.${ }^{4} \checkmark$

Candidate B - evidence of substitution using a calculator

$$
\begin{aligned}
& \int\left(x^{3}-5 x^{2}+2 x+8\right) d x \\
& =\frac{1}{4} x^{4}-\frac{5}{3} x^{3}+\frac{2 x^{2}}{2}+8 x \\
& =\frac{32}{3}-\left(-\frac{61}{12}\right) \\
& =\frac{63}{4}
\end{aligned}
$$

Question		Generic scheme	Illustrative scheme	Max mark
4.	(b)	Method 1 - ${ }^{5}$ state appropriate integral -6 evaluate integral - ${ }^{7}$ interpret result and evaluate total area	Method 1 - ${ }^{5} \int_{2}^{4}\left(x^{3}-5 x^{2}+2 x+8\right) d x$ - $6-\frac{16}{3}$ -7 $\frac{253}{12}$ or $21.083 \ldots$	3
		Method 2 - 5 state appropriate integral - ${ }^{6}$ substitute limits ${ }^{-7}$ evaluate total area	Method 2 $\begin{aligned} & \bullet^{5} \int_{2}^{4}\left(0-\left(x^{3}-5 x^{2}+2 x+8\right)\right) d x \\ & \cdot{ }^{6}-\left(\frac{1}{4}(4)^{4}-\frac{5}{3}(4)^{3}+(4)^{2}+8(4)\right)- \\ & \left(-\left(\frac{1}{4}(2)^{4}-\frac{5}{3}(2)^{3}+(2)^{2}+8(2)\right)\right) \end{aligned}$ -7 $\frac{253}{12}$ or $21.083 \ldots$	

Notes:

7. For candidates who only consider $\int_{-1}^{4} \ldots d x$ or any other invalid integral, award $0 / 3$.
8. In part (b), at \bullet^{5} do not penalise the omission of ' $d x$ '.
9. In Method 1, \bullet^{5} may be awarded for $\left[\frac{1}{4} x^{4}-\frac{5}{3} x^{3}+\frac{2 x^{2}}{2}+8 x\right]_{2}^{4}$ or $\left(\frac{1}{4}(4)^{4}-\frac{5}{3}(4)^{3}+(4)^{2}+8(4)\right)-\left(\frac{1}{4}(2)^{4}-\frac{5}{3}(2)^{3}+(2)^{2}+8(2)\right)$.
10. In Method 2, \bullet^{5} may be awarded for $\left[\frac{1}{4} x^{4}-\frac{5}{3} x^{3}+\frac{2 x^{2}}{2}+8 x\right]_{4}^{2}$ or \bullet^{5} and \bullet^{6} may be awarded for $\left(\frac{1}{4}(2)^{4}-\frac{5}{3}(2)^{3}+(2)^{2}+8(2)\right)-\left(\frac{1}{4}(4)^{4}-\frac{5}{3}(4)^{3}+(4)^{2}+8(4)\right)$.
11. \bullet^{7} is not available to candidates where solutions include statements such as $-\frac{16}{3}=\frac{16}{3}$ square units. See Candidate D.
12. In Method 1, where a candidate's integral leads to a positive value, \bullet^{7} is not available.
13. Where a candidate has differentiated in both parts of the question see Candidate E .

| Question | Generic scheme | Max
 mark |
| :---: | :---: | :---: | :---: |

4. (b) (continued)

Commonly Observed Responses:

Candidate D - communication for \bullet^{7}
$\int_{2}^{4}\left(x^{3}-5 x^{2}+2 x+8\right) d x=-\frac{16}{3}$
$\frac{63}{4}+\frac{16}{3}=\frac{253}{12}$
$\bullet^{7} \checkmark$

However, \bullet^{7} is not available where statements such as " $-\frac{16}{3}=\frac{16}{3}$ square units" or "ignore negative" appear.
Candidate E - differentiation in (a) and (b)
(a) $\begin{array}{ll}\int_{-1}^{2}\left(x^{3}-5 x^{2}+2 x+8\right) d x & \bullet^{1} \checkmark \\ =3 x^{2}-10 x+2 & \bullet^{2} x \\ =\left(3(2)^{2}-10(2)+2\right)-\left(3(-1)^{2}-10(-1)+2\right) & \bullet^{3} x \\ =-21 & \end{array}$
(b) $\left(3(4)^{2}-10(4)+2\right)-\left(3(2)^{2}-10(2)+2\right)=16$
$\bullet \checkmark \cdot 6 \checkmark 1$
Total Area $=5$

- $\sqrt{\checkmark} 2$ see note 12

Question				Illustrative scheme	Max mark
5.	(a)	(i)	- ${ }^{1}$ interpret -2 state expr	$\begin{aligned} & \cdot f(3 x+5) \text { or }(g(x))^{2}-2 \\ & \bullet^{2}(3 x+5)^{2}-2 \end{aligned}$	2
		(ii)	- ${ }^{3}$ state expre	- 3 ($\left.x^{2}-2\right)+5$	1
Notes:					
1. For $f(g(x))=(3 x+5)^{2}-2$ without working, award both \bullet^{1} and \bullet^{2}.					
Commonly Observed Responses:					
Candidate A (a)(i) $f(g(x))=3\left(x^{2}-2\right)+5$ $\bullet^{1} \times \bullet^{2} \boxed{\checkmark}$ (a)(ii) $g(f(x))=(3 x+5)^{2}-2$ $\bullet^{3} \boxed{ } 1$					

	Question	Generic scheme	Illustrative scheme	Max mark
6.		- ${ }^{1}$ write in integrable form - ${ }^{2}$ integrate one term - ${ }^{3}$ complete integration -4 interpret information given and substitute for x and y - 5 state expression for y	- $1-3 x^{-2}$ - $2 x$ or $\cdots-\frac{3 x^{-1}}{-1}$ $\bullet^{3} \ldots-\frac{3 x^{-1}}{-1}+c$ or $x \ldots+c$ ${ }^{4} 6=3+3(3)^{-1}+c$ - $5=x+3 x^{-1}+2$	5
Notes:				
1. For candidates who make no attempt to integrate only \bullet^{1} is available. 2. For candidates who omit $+c$ only \bullet^{1} and \bullet^{2} are available. 3. For candidates who differentiate either term, \bullet^{3}, \bullet^{4}, and \bullet^{5} are not available.				
Commonly Observed Responses:				
Candidate C - inconsistent working$\begin{aligned} \frac{d y}{d x}= & 1-\frac{3}{x^{2}} & & \\ & x-3 x^{-2} & & \bullet^{1} \times \\ y= & x-\frac{3 x^{-1}}{-1}+c & & \bullet^{2} \checkmark 1 \cdot 3 \sqrt{ } \quad \checkmark \end{aligned}$			Candidate D-inconsistent working $\begin{aligned} \frac{d y}{d x} & =1-\frac{3}{x^{2}} & & \\ & x-3 x^{-2} & & \bullet^{1} \boldsymbol{x} \\ y= & \frac{x^{2}}{2}-\frac{3 x^{-1}}{-1}+c & & \bullet^{2} \sqrt{ } 1 \cdot e^{3} \sqrt{ } \end{aligned}$	
Candidate E integration not complete at \bullet^{3} stage$\begin{array}{ll} \frac{d y}{d x}=1-3 x^{-2} & \bullet \checkmark \\ y=x-\frac{3 x^{-1}}{-1} & \bullet \bullet \bullet \bullet x \\ y=x+3 x^{-1}+c & \end{array}$				

Question		Generic scheme	Illustrative scheme	Max mark
7.	(continued)			
		Method 4 - ${ }^{1}$ interpret point on log graph - ${ }^{2}$ convert from log to exponential form - 3 interpret point and convert - ${ }^{4}$ substitute into $y=k x^{n}$ and evaluate k - 5 substitute other point into $y=k x^{n}$ and evaluate n	Method 4 - ${ }^{1} \log _{5} x=0$ and $\log _{5} y=3$ - ${ }^{2} x=1, y=5^{3}$ $\text { - } \begin{aligned} & \log _{5} x=2 \text { and } \log _{5} y=-1 \\ x & =5^{2} \text { and } y=5^{-1} \end{aligned}$ $\cdot{ }^{4} 5^{3}=k(1)^{n} \Rightarrow k=125$ - $5^{-1}=5^{3} \times 5^{2 n}$ $\Rightarrow 3+2 n=-1$ $\Rightarrow n=-2$	
Notes:				
1. In any method, marks may only be awarded within a valid strategy using $y=k x^{n}$. 2. Markers must identify the method which best matches the candidates approach; markers must not mix and match between methods. 3. Penalise the omission of base 5 at most once in any method. 4. In Method 4, candidates may use $(2,-1)$ for \bullet^{1} and \bullet^{2} and $(0,3)$ for \bullet^{3}. 5. Do not accept $k=5^{3}$. 6. In Method 3, do not accept $m=-2$ or gradient $=-2$ for \bullet^{5}. 7. Accept $y=125 x^{-2}$ for \bullet^{5}.				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)	- ${ }^{1}$ determine expression for area of pond -2 obtain expression for y - ${ }^{3}$ demonstrate result	- ${ }^{1}(x-3)(y-2)$ stated or implied by ${ }^{3}$ - $2 y=\frac{150}{x}$ - ${ }^{3} \quad A(x)=(x-3)\left(\frac{150}{x}-2\right)$ eg $A(x)=\frac{150 x}{x}-\frac{450}{x}-2 x+6$ $A(x)=156-2 x-\frac{450}{x}$	3

1. Accept any legitimate variations for the area of the pond in \bullet, eg $A=150-2(x-3)-2(y)(1.5)$.
2. Do not penalise the omission of brackets at \bullet^{1}. See Candidate A.
3. The substitution for y at \bullet^{3} must be clearly shown for \bullet^{3} to be available.

Commonly Observed Responses:

Candidate A

$\begin{array}{ll}A(x)=x-3 \times y-2 & \bullet \downarrow \\ A(x)=x-3 \times \frac{150}{x}-2 & \bullet \bullet^{2} \downarrow \\ A(x)=156-2 x-\frac{450}{x} & \bullet \bullet^{3} \wedge\end{array}$

Question		Generic scheme	Illustrative scheme	Max mark
8	(b)	- ${ }^{4}$ express A in differentiable form - ${ }^{5}$ differentiate - ${ }^{6}$ equate expression for derivative to 0 ${ }^{7}$ solve for x - ${ }^{8}$ verify nature of stationary point - ${ }^{9}$ determine maximum area	-4 $156-2 x-450 x^{-1}$ stated or implied by \bullet^{5} $\cdot^{5}-2+450 x^{-2}$ -6 $-2+450 x^{-2}=0$ -7 $x=15$ \bullet table of signs for derivative \therefore maximum or $A^{\prime \prime}(x)=-900 x^{-3}$ and $A^{\prime \prime}(15)<0$ \therefore maximum - ${ }^{9} A=96\left(\mathrm{~m}^{2}\right)$	6
Notes:				
4. For a numerical approach award $0 / 6$. 5. \bullet^{6} can be awarded for $450 x^{-2}=2$. 6. For candidates who integrate any term at the \bullet^{5} stage, only \bullet^{6} is available on follow through for setting their 'derivative' to 0 . 7. \bullet^{7}, \bullet^{8}, and \bullet^{9} are only available for working with a derivative which contains an index ≤-2. 8. $\sqrt{\frac{450}{2}}$ must be simplified at \bullet^{7} or \bullet^{8} for \bullet^{7} to be awarded. 9. Ignore the appearance of -15 at mark \bullet^{7}. 10. \bullet^{8} is not available to candidates who consider a value of $x \leq 0$ in the neighbourhood of 15 . 11. \bullet is still available in cases where a candidate's table of signs does not lead legitimately to a maximum at \bullet^{8}. 12. \bullet^{8} and \bullet^{9} are not available to candidates who state that the maximum exists at a negative value of x.				

| Question | | Generic scheme | Illustrative scheme |
| :---: | :---: | :---: | :---: | | Max |
| :---: |
| mark |

8. (b) (continued)

Notes (continued)

For the table of signs for a derivative, accept:

x	15^{-}	15	15^{+}	x	\rightarrow	15	\rightarrow	x	a	15	b
$A^{\prime}(x)$	+	0	-	$A^{\prime}(x)$	+	0	-	$A^{\prime}(x)$	+	0	-
$\begin{aligned} & \text { Slope } \\ & \text { or } \\ & \text { shape } \end{aligned}$				Slope or shape				Slope or shape			

Arrow are taken to mean 'in the neighbourhood of'

For the table of signs for a derivative, do not accept:

x	\rightarrow	-15	\rightarrow	15	\rightarrow
$A^{\prime}(x)$	-	0	+	0	-
Slope or shape	\searrow				

Since the function is discontinuous $-15 \rightarrow 15$ is not acceptable

x	a	-15	b	15	c
$A^{\prime}(x)$	-	0	+	0	-
Slope or shape	\searrow				

Since the function is discontinuous $-15<b<15$ is not acceptable

- For this question do not penalise the omission of ' x ' or the word 'shape'/‘slope'.
- Stating values of $A^{\prime}(x)$ is an acceptable alternative to writing '+' or '-' signs.
- Acceptable variations of $A^{\prime}(x)$ are: $A^{\prime}, a^{\prime}(x), \frac{d A}{d x}$, and $-2+450 x^{-2}$.

Commonly Observed Responses:

Candidate B - differentiating over multiple lines
$A^{\prime}(x)=-2-450 x^{-1}$
$A^{\prime}(x)=-2+450 x^{-2}$
$-2+450 x^{-2}=0$
$.4^{4}$
$.5^{5} x$
$.6 \boxed{ } 1$

Candidate \mathbf{C} - differentiating over multiple lines

$A(x)=156-2 x-450 x^{-1}$	$\bullet \checkmark$
$A^{\prime}(x)=-2-450 x^{-1}$	
$A^{\prime}(x)=-2+450 x^{-2}$	$\bullet^{5} x$
$-2+450 x^{-2}=0$	$\bullet 61$

	uest	Generic scheme	Illustrative scheme	Max mark
9.	(a)	- ${ }^{1}$ substitute for y in equation of circle -2 arrange in standard quadratic form - ${ }^{3}$ factorise - ${ }^{4}$ state x coordinates ${ }^{5}$ state corresponding y coordinates	$\bullet 1$ $\begin{aligned} & x^{2}+(3 x+7)^{2}-4 x-6(3 x+7)-7 \\ & =0 \end{aligned}$ -2 $10 x^{2}+20 x=0$ -3 $10 x(x+2)=0$	5

1. \bullet^{1} is only available if ' $=0$ ' appears by the \bullet^{3} stage.
2. At \bullet^{3}, the quadratic must lead to two distinct real roots for \bullet^{4} and \bullet^{5} to be available.
3. At \bullet^{3} do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10 .
4. If a candidate arrives at an equation which is not a quadratic at \bullet^{2} stage, then \bullet^{3}, \bullet^{4} and \bullet^{5} are not available
5. \bullet^{3} is available for substituting correctly into the quadratic formula.
6. \bullet^{4} and \bullet^{5} may be marked either horizontally or vertically.
7. Ignore incorrect labelling of P and Q .

Commonly Observed Responses:

Candidate A-substituting for \boldsymbol{y}
$\left(\frac{y-7}{3}\right)^{2}+y^{2}-4\left(\frac{y-7}{3}\right)-6 y-7=0 \bullet^{1} \checkmark$
$\frac{10 y^{2}-80 y+70}{9}=0$
$10(y-1)(y-7)=0$
$\bullet^{2} \checkmark$
$y=1$ or $y=7$
$x=-2$ or $x=0$
$\bullet{ }^{4}$

Question		Generic scheme	Illustrative scheme	Max mark
9.	(b)	- ${ }^{6}$ state centre of circle -7 calculate midpoint of PQ ${ }^{8}$ calculate radius of small circle - ${ }^{9}$ state equation of small circle	${ }^{6}(2,3)$ - $^{7}(-1,4)$ $\cdot 8 \sqrt{10}$ - $(x-2)^{2}+(y-3)^{2}=10$	4

8. Evidence for 0^{6} may appear in part (a).
9. Where a candidate uses coordinates for P and Q without supporting working, \bullet^{7} is not available, however \bullet^{8} and \bullet^{9} may be awarded.
10. Where candidates find the equation of the larger circle \bullet^{8} and $\bullet{ }^{9}$ are not available.

Commonly Observed Responses:

Candidate B-using substitution
Equation of smaller circle of form

$(x-2)^{2}+(y-3)^{2}=r^{2}$	$\bullet 6$
Midpoint PQ $(-1,4)$	$\bullet \checkmark$

$(-1-2)^{2}+(4-3)^{2}=r^{2}$
$r^{2}=10$
$(x-2)^{2}+(y-3)^{2}=10$

Candidate C - using tangency
Equation of smaller circle of form

$$
(x-2)^{2}+(y-3)^{2}=r^{2} \quad \bullet^{6} \downarrow
$$

Since $y=3 x+7$ is tangent to smaller circle
$10 x^{2}+20 x+20-r^{2}=0$ has equal roots
$\Rightarrow 20^{2}-4(10)\left(20-r^{2}\right)=0 \quad \quad^{7} \checkmark$
$\Rightarrow r^{2}=10 \quad \bullet^{8} \checkmark$
$(x-2)^{2}+(y-3)^{2}=10 \quad \bullet \checkmark$

Candidate D - using P or Q to mid-point as radius
$r=\sqrt{(-2+1)^{2}+(1-4)^{2}}=\sqrt{10}$
$\bullet^{8} x$
or
$r=\sqrt{(0+1)^{2}+(7-4)^{2}}=\sqrt{10} \quad \bullet^{8} x$
$(x-2)^{2}+(y-3)^{2}=10 \quad \bullet \square 2$

[END OF MARKING INSTRUCTIONS]

